Search results for "COSMIC CENSORSHIP"

showing 4 items of 4 documents

Wormholes and nonsingular spacetimes in Palatinif(R)gravity

2015

We reconsider the problem of $f(R)$ theories of gravity coupled to Born-Infeld theory of electrodynamics formulated in a Palatini approach, where metric and connection are independent fields. By studying electrovacuum configurations in a static and spherically symmetric space-time, we find solutions which reduce to their Reissner-Nordstr\"om counterparts at large distances but undergo important non-perturbative modifications close to the center. Our new analysis reveals that the point-like singularity is replaced by a finite-size wormhole structure, which provides a geodesically complete and thus nonsingular space-time, despite the existence of curvature divergences at the wormhole throat. …

High Energy Physics - TheoryPhysicsGeodesicSpacetime010308 nuclear & particles physicsCosmic censorship hypothesisFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesSpherically symmetric spacetimeGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyClassical mechanicsSingularityHigh Energy Physics - Theory (hep-th)Born–Infeld model0103 physical sciencesf(R) gravityWormhole010303 astronomy & astrophysicsMathematical physicsPhysical Review D
researchProduct

What is a singular black hole beyond general relativity?

2017

Exploring the characterization of singular black hole spacetimes, we study the relation between energy density, curvature invariants, and geodesic completeness using a quadratic $f(R)$ gravity theory coupled to an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal extensions of General Relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordstr\"{o}m solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a breakdown of the correlations between the finiteness/divergence of the…

High Energy Physics - TheoryPhysicsMODIFIED THEORIES OF GRAVITY010308 nuclear & particles physicsGeneral relativityCiencias FísicasFOS: Physical sciences//purl.org/becyt/ford/1.3 [https]General Relativity and Quantum Cosmology (gr-qc)COSMIC CENSORSHIPOtras Ciencias Físicas01 natural sciencesCLASSICAL BLACK HOLESGeneral Relativity and Quantum Cosmology//purl.org/becyt/ford/1 [https]General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)EINSTEIN-MAXWELL SPACETIMEQuantum mechanics0103 physical sciences010306 general physicsHumanitiesCIENCIAS NATURALES Y EXACTASPhysical Review D
researchProduct

Renormalization group improved black hole spacetimes

2000

We study the quantum gravitational effects in spherically symmetric black hole spacetimes. The effective quantum spacetime felt by a point-like test mass is constructed by ``renormalization group improving'' the Schwarzschild metric. The key ingredient is the running Newton constant which is obtained from the exact evolution equation for the effective average action. The conformal structure of the quantum spacetime depends on its ADM-mass M and it is similar to that of the classical Reissner-Nordstrom black hole. For M larger than, equal to, and smaller than a certain critical mass $M_{\rm cr}$ the spacetime has two, one and no horizon(s), respectively. Its Hawking temperature, specific hea…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCosmic censorship hypothesisPlanck massFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum spacetimeGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)De Sitter universeQuantum mechanicsSchwarzschild metricQuantum gravityBlack hole thermodynamics
researchProduct

Cosmic censorship conjecture in some matching spherical collapsing metrics

2017

A physically plausible Lema{\^{\i}}tre-Tolman-Bondi collapse in the marginally bound case is considered. By "physically plausible" we mean that the corresponding metric is ${\cal C}^1$ matched at the collapsing star surface and further that its {\em intrinsic} energy is, as due, stationary and finite. It is proved for this Lema{\^{\i}}tre-Tolman-Bondi collapse, for some parameter values, that its intrinsic central singularity is globally naked, thus violating the cosmic censorship conjecture with, for each direction, one photon, or perhaps a pencil of photons, leaving the singularity and reaching the null infinity. Our result is discussed in relation to some other cases in the current liter…

PhysicsGravitacióConjecture010308 nuclear & particles physicsStar (game theory)media_common.quotation_subjectCosmic censorship hypothesisNull (mathematics)Collapse (topology)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsInfinity01 natural sciencesGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologySingularityRelativitat general (Física)0103 physical sciencesGravitational singularity010306 general physicsMathematical physicsmedia_common
researchProduct